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Abstract

Synthetic sound generation techniques for pipe or-
gans are currently based on samples and wave tables,
and physical synthesis. The samples require expen-
sive and time-consuming editing and recording. In
this paper I present a method of synthesizing pipe
organ sounds using additive synthesis by interpolat-
ing certain harmonics of recordings. The N largest
frequency components of the power spectral density
of each recording are found and analyzed to find their
percentage power contribution to the overall record-
ing and harmonic above the fundamental. Simple
polynomial fit algorithms are applied to each of the
N components and a function generated to describe
them at any frequency. Unique sinusoids can be gen-
erated in real time at arbitrary frequencies and am-
plitudes without the need for samples or wave tables.

1 Introduction

Current sound-generation techniques for organs gen-
erally involve some combination of (1) playback
of pre-recorded samples or wave tables, (2) sam-
pling playback manipulation or interpolation to ad-
just pitch, (3) physical models describing pipe out-
put [1]. The first method, which requires organ tun-
ing, recording, and editing of samples sets is expen-
sive, time consuming, data intensive, and limits play-
back to only recorded pitches. The second method,
when combined with the first, allows any pitch to be
produced, but only at exact harmonic structure as
the original sample. The third method, though in-
expensive and appropriate for real time work, does
not take into account slight variations in pipe con-
struction across the range, and so again results in a
static harmonic structure. Hence, no current method
is inexpensive, easily available, and accurate to organ
acoustics.

This paper presents a method to address these
shortcomings by proposing a relatively simple, in-
expensive approach to model a harmonic structure
across an entire range. This method requires only a

limited number of recordings, which need not be of
high quality or in tune. A set of continuous functions
is produced, which will be able to generate unique
outputs at any frequency.

2 Background

A piano and a violin, when playing the same note
(i.e., sounding the same pitch), are distinguishable
because of the harmonic structure of the created
sound. When a specific note is played, resonance
occurs, producing a sound at a specific base or fun-
damental frequency. Additional frequencies that are
positive integer multiples of that base frequency also
are produced. These frequencies are called the har-
monic series. For example, if a note is played with a
base frequency of 200Hz, harmonics at 400Hz, 600Hz,
etc. are also produced. Some instruments only gen-
erate the odd harmonics: from the base of 200Hz,
400Hz is skipped and 600Hz remains, etc. The trend
of these harmonics is to decrease in power as distance
from the base frequency increases. Other frequencies
that are not positive integer multiples are also pro-
duced with, in general, much lower power, but with
a similar decreasing trend. Hence, these differences
in harmonic structure produced aural (heard) differ-
ences between instruments.

Pipe organs are unique wind instruments in that
each sound is generated by its own pipe. This, by na-
ture, creates variations in the harmonics of each pipe
(and thus over the entire range) because of slight fab-
rication differences or purposeful voicing differences
by the builder. This is in contrast with other wind
instruments where the effective length of a single pipe
is changed with valves (e.g., trumpet), holes that are
covered (e.g., clarinet), or a slide (e.g., trombone).
Thus, other wind instruments, which are based on a
single piece of metal or wood, have a similar harmonic
structure over their entire range.
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Figure 1: Excerpt of a recorded wave.

3 Method

3.1 Recording Analysis

Recordings of the chosen notes are made and edited
to include only the primary pipe speech, excluding
the initial attack and final release of the note where
other effects occur (Figure 1). The power spectral
density (PSD) of each recording is estimated (e.g.,
using Welch’s method [2], Figure 2). A PSD func-
tion determines the power distribution of a signal in
the frequency domain. This allows determination of
the power of the signal at discrete frequencies. The
N (an arbitrary number chosen by the user) largest
peaks in each distribution are found by searching for
three consecutive points where the middle point has
greater value than both surrounding points (Figure
2). The percentage power contribution of each peak
is found by dividing the power of the peak by the
total power of the distribution. Finally, the expected
base frequency is recorded as the closest frequency to
it that is also one of the N peaks. The exact base
frequency cannot be used because the PSD function
produces a list of discrete frequencies. Furthermore,
the number of peaks is chosen so that there is a close
match (within 2Hz, generally). This is generally not
an issue because the base frequency is almost always
one of the first two peaks.

At this point processing on individual recordings
is complete, and they can now be processed as a set.
The first peak power contribution of each recording
is taken, along with that recording’s base frequency.
A least-squares polynomial fit algorithm is applied
where the base frequency (F') is the independent vari-
able and the peak power contribution corresponding
to that base frequency (P) is the dependent variable.
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Figure 2: Excerpt of the PSD of a recorded wave.
The first five peaks are marked with red circles.

Third-degree polynomials tend to produce good re-
sults. This procedure is repeated for all of the other
N peaks so that the polynomial fit algorithm is ap-
plied to all of the second, third, etc. peak power con-
tributions up to N. These algorithms generate coef-
ficients a, b, and ¢ for the simple polynomial

P =aF?+bF +c, (1)
where F' is the desired frequency and P is the re-
sultant power contribution for each of the first N
power contributions. This produces continuous func-
tions from which to generate individual (and likely
unique) harmonic structures at any frequency.

3.2 Sound Synthesis

To synthesize a desired sound at base frequency F'Hz,
find the frequencies of the N peaks of the recording
with the closest base frequency to F'. Alternatively,
other search methods can be used. For example, find
the recording with the closest base frequency to F
that is not greater than F, if there is such a fre-
quency. Generate sinusoids at these frequencies at
desired lengths and sampling frequencies. Apply F'
to Eq. (1) with output as P, and scale (e.g., multi-
ply) each value from the generated sinusoids by P.
Then simply add the first, second, third, etc. value of
each wave together to produce the output wave.

4 Results

One test of this method involved recordings of five Cts
of the 8-foot principal rank (Cfl to C#5). The lowest
recording, which has a base frequency of 137.16Hz,
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Figure 3: Excerpt of a synthesized wave.
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Figure 4: Excerpt of the PSD of a synthesized wave.
The first five peaks are marked with red circles.

was used as a reference for comparison (Figures 1-
2). Using the above method a wave was synthesized
(Figure 3). The resulting PSD from the synthesized
wave (Figure 4) shows peaks with similar frequencies
and amplitudes to the reference. Clearly all of the
other features of the wave (non-smoothness between
peaks of Figure 2) are lost and not generated in this
synthesized wave.

Listening test results are acceptable. The produced
sound is clearly of correct pitch and timbre. It is
also, however, clearly computer generated. This is
expected because, as noted above, all features out-
side of the generated peaks are lost. Furthermore,
when going beyond the range of the lowest and high-
est recorded sounds, the generated sounds can get
wildly inaccurate, with the percentage contribution
multipliers quickly blowing up, yielding meaningless

results. Thus, generated sounds should be confined to
the interval between the lowest and highest recorded
notes, or within a small margin thereof.

As a result of using the closest recorded note to
the desired frequency as the basis for the harmonic
structure, there are very noticeable changes when lis-
tening to a full range sweep of produced noises (i.e.,
a generated tone corresponding to each note on an
organ). This occurs when the closest recorded note
switches to another recorded note. The change in
harmonic structure is noticeable since it is so abrupt
and unnatural.

Regarding a computer back end, this method meets
the requirements of real time speed. Generating sinu-
soids at a certain sampling frequency (e.g., 48kHz) for
N peaks (e.g., 50) is about 2.4 million samples per
second. Each sample requires a sinusoid operation,
two multiplication operations, and some trivial op-
erations that have no significant performance effect.
Modern computers run in the range of billions of op-
erations per second, or about two to four orders of
magnitude faster than required to process real-time
requests of a naive implementation. There is thus
computational availability for multiple notes. With
optimized, cached, or preprocessed data, this avail-
ability can increase further. For example, ChucK can
easily mix 100 sinusoids at 44.1kHz on the author’s
computer, which has a clock rate of 2.0 GHz.

Processing speed of this algorithm is on the order of
one second per recording. The author’s implementa-
tion in Python is slowest at searching for peaks after
a PSD has been performed. The PSD function, which
involves many Fast Fourier Transforms (FFT), is not
computationally expensive. In order to increase fre-
quency precision, the number of FFT points is high
(217), which is larger than the number of samples in
most recordings under 2 seconds, and thus only one
FFT is computed per recording. However, computa-
tion time is not a critical issue because it need only
be done once and can be done when time constraints
are lenient.

5 Discussion and Further Work

As touched on above, there are some boundaries
between notes on a full range where the harmonic
structure noticeably changes from one recorded note’s
structure to another’s. It is not possible simply to
apply a polynomial fitting algorithm to the harmon-
ics as was done in the power contribution case. For
example, consider a set consisting of two recordings
of C1 and C2 (which are an octave apart). Both
recordings have as their most powerful frequency



(first peak) their base frequency. The lower record-
ing has as its second most powerful frequency (sec-
ond peak) twice the base frequency (one octave or
12/12%0 above the base), as would be expected from
a simple harmonic series. The higher recording, how-
ever, has as its second peak triple the base frequency
(two octaves or 24/12*8% above the base). If a simple
linear interpolation is applied to determine the sec-
ond peaks, the results between C1 and C2 will evenly
distribute between 12/12'" and 24/12'" above the
base, which frequencies are not in the harmonic series,
and thus will not sound correct. For example, taking
one note above the lowest recording, Cf1, this incor-
rect interpolation dictates the second peak should be
13/12% above the base. D1 similarly has a second
peak 14/12ths above the base, continuing up to Bl
at 23/12%" and ending at C2 at 24/12th¢ above the
base, or triple the base frequency.

In general, the harmonics above the base are taken
from a set of often-used harmonics, that tend to be
integer multiples above or integer divisors below (e.g.,
1/2) the base frequency. Thus, a solution is perhaps
a somewhat discretized list assigning a certain prob-
ability to each harmonic. Other algorithms involv-
ing optimization and genetic algorithms may suggest
other models. These models, when applied to data
from a recording set over a full range of notes, could
yield methods to generate individual harmonic struc-
ture for all frequencies.

Of interest to sound engineers and others interested
in vocoders is the possibility of applying this method
on a recording set not consisting of all one instrument.
For example, a recording set of a bass drum, oboe,
and voice could produce unique results with varying
components of each at all ranges. This application,
however, is not worth while until the harmonic struc-
ture is a function of frequency, as discussed in the
proceeding paragraph.

The method described herein does not model many
parts pipe speech: (1) the beginning of pipe speech,
called chiff, is an important part of all pipe organs
that is specifically modified (not removed) by the
builder during installation; (2) the end of pipe speech,
which is of less importance; (3) sibilance, the sound
of air moving over a pipe mouth during nominal
speech. Without these it is clear that the produced
sound does not come from a genuine pipe. The above
method works well on sounds that have a few signifi-
cant frequencies making up much of the sound. These
three parts of pipe speech have no such property, and
so are perhaps modeled better in the time domain,
instead of the frequency domain.

6 Conclusion

Current sound synthesis techniques are computa-
tionally and monetarily expensive, and harmonically
identical. The method presented above for organ
sound synthesis produces functions that can describe
unique waveforms at arbitrary frequencies within the
range of the recordings. Since many parts of pipe
speech are not modeled and other harmonic problems
remain, this method is not fit for use in production
systems. However, the results show a working proof-
of-concept implementation, and suggest further work
is warranted.

The author has implementations available online
(http://mattjibson.com/schalmei/).
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